Hyperbolic rational homology spheres not admitting fillable contact structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Homology 7-Spheres

In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.

متن کامل

A Class of Non-fillable Contact Structures

In [Kl06] a geometric obstruction, the so called ”plastikstufe”, for a contact structure to not being fillable has been found. This generalizes somehow the concept of overtwisted structure to dimensions higher than 3. This paper elaborates on the theory showing a big number of closed contact manifolds with a ”plastikstufe”. This implies that all of them are non-fillable. In particular we show t...

متن کامل

Signatures of Links in Rational Homology Spheres

A theory of signatures for odd-dimensional links in rational homology spheres are studied via their generalized Seifert surfaces. The jump functions of signatures are shown invariant under appropriately generalized concordance and a special care is given to accommodate 1-dimensional links with mutual linking. Furthermore our concordant theory of links in rational homology spheres remains highly...

متن کامل

Einstein Metrics on Rational Homology Spheres

In this paper we prove the existence of Einstein metrics, actually SasakianEinstein metrics, on nontrivial rational homology spheres in all odd dimensions greater than 3. It appears as though little is known about the existence of Einstein metrics on rational homology spheres, and the known ones are typically homogeneous. The are two exception known to the authors. Both involve Sasakian geometr...

متن کامل

Automorphic forms and rational homology 3–spheres

We investigate a question of Cooper adjacent to the Virtual Haken Conjecture. Assuming certain conjectures in number theory, we show that there exist hyperbolic rational homology 3–spheres with arbitrarily large injectivity radius. These examples come from a tower of abelian covers of an explicit arithmetic 3–manifold. The conjectures we must assume are the Generalized Riemann Hypothesis and a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2017

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2017.v24.n6.a6